Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Journal of Computational and Graphical Statistics ; 2023.
Article in English | Scopus | ID: covidwho-2255784

ABSTRACT

We develop a new method to locally cluster curves and discover functional motifs, that is, typical shapes that may recur several times along and across the curves capturing important local characteristics. In order to identify these shared curve portions, our method leverages ideas from functional data analysis (joint clustering and alignment of curves), bioinformatics (local alignment through the extension of high similarity seeds) and fuzzy clustering (curves belonging to more than one cluster, if they contain more than one typical shape). It can employ various dissimilarity measures and incorporate derivatives in the discovery process, thus exploiting complex facets of shapes. We demonstrate the performance of our method with an extensive simulation study, and show how it generalizes other clustering methods for functional data. Finally, we provide real data applications to Italian Covid-19 death curves and Omics data related to mutagenesis. Supplementary materials for this article are available online. © 2023 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America.

2.
Transactions on Data Privacy ; 13(1):61-66, 2020.
Article in English | Scopus | ID: covidwho-829135

ABSTRACT

The rapid dynamics of COVID-19 calls for quick and effective tracking of virus transmission chains and early detection of outbreaks, especially in the “phase 2” of the pandemic, when lockdown and other restriction measures are progressively withdrawn, in order to avoid or minimize contagion resurgence. For this purpose, contact-tracing apps are being proposed for large scale adoption by many countries. A centralized approach, where data sensed by the app are all sent to a nation-wide server, raises concerns about citizens’ privacy and needlessly strong digital surveillance, thus alerting us to the need to minimize personal data collection and avoiding location tracking. We advocate the conceptual advantage of a decentralized approach, where both contact and location data are collected exclusively in individual citizens’ “personal data stores”, to be shared separately and selectively (e.g., with a backend system, but possibly also with other citizens), voluntarily, only when the citizen has tested positive for COVID-19, and with a privacy preserving level of granularity. This approach better protects the personal sphere of citizens and affords multiple benefits: It allows for detailed information gathering for infected people in a privacy-preserving fashion;and, in turn this enables both contact tracing, and, the early detection of outbreak hotspots on more finely-granulated geographic scale. The decentralized approach is also scalable to large populations, in that only the data of positive patients need be handled at a central level. Our recommendation is two-fold. First to extend existing decentralized architectures with a light touch, in order to manage the collection of location data locally on the device, and allowthe user to share spatio-temporal aggregates-if and when they want and for specific aims-with health authorities, for instance. Second, we favour a longerterm pursuit of realizing a Personal Data Store vision, giving users the opportunity to contribute to collective good in the measure they want, enhancing self-awareness, and cultivating collective efforts for rebuilding society. © 2020, University of Skovde. All rights reserved.

SELECTION OF CITATIONS
SEARCH DETAIL